If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-150x-1=0
a = 6; b = -150; c = -1;
Δ = b2-4ac
Δ = -1502-4·6·(-1)
Δ = 22524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22524}=\sqrt{4*5631}=\sqrt{4}*\sqrt{5631}=2\sqrt{5631}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-2\sqrt{5631}}{2*6}=\frac{150-2\sqrt{5631}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+2\sqrt{5631}}{2*6}=\frac{150+2\sqrt{5631}}{12} $
| 6(-7+5p)=-192 | | -6x-5x=-6x-5+3 | | 2x+7+8x=13X= | | -3y+4=7 | | 3(v+5)-6v=-12 | | 7-3(6x-6)=-17-4x | | 437.89=240+0.77x | | (6x+8)=(10x-10) | | 7-3(6x-6)=-174x | | 35,000=15.99x-1.25 | | 4x+33=123-6x | | j/2=4 | | 241 x+21 x=44 | | -3x-9=2x-34 | | 8(-3+3n)-8(7+6n)=-32 | | -5x+36=-2(7x+8)-2 | | 4x+51=11x+9 | | 10x+-4+2x+8=-3+2x+4x+-3+-2 | | -87=-3(6b-7) | | (2x+1)(x−5)=0 | | 6(x+1)-5x=-8 | | 150x=2000-1.50 | | 4(x-5)+3x=15 | | -4/12y=-16/33 | | 2000=150x-1.50 | | -4g+17=3g-4 | | 5x+5x=11x | | x+4+2x=1+5x | | 2w^2-w+28=0 | | 2000=150-1.50x | | -5x+6-4=-4x+8 | | 2x+4x=116 |